Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.

Identifieur interne : 000061 ( Main/Exploration ); précédent : 000060; suivant : 000062

Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.

Auteurs : K R Sharma [Inde] ; R. Giri [Inde] ; R K Sharma [Inde]

Source :

RBID : pubmed:32785942

Abstract

Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l-1 Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.

DOI: 10.1111/lam.13372
PubMed: 32785942


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.</title>
<author>
<name sortKey="Sharma, K R" sort="Sharma, K R" uniqKey="Sharma K" first="K R" last="Sharma">K R Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giri, R" sort="Giri, R" uniqKey="Giri R" first="R" last="Giri">R. Giri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, R K" sort="Sharma, R K" uniqKey="Sharma R" first="R K" last="Sharma">R K Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32785942</idno>
<idno type="pmid">32785942</idno>
<idno type="doi">10.1111/lam.13372</idno>
<idno type="wicri:Area/Main/Corpus">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000065</idno>
<idno type="wicri:Area/Main/Curation">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000065</idno>
<idno type="wicri:Area/Main/Exploration">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.</title>
<author>
<name sortKey="Sharma, K R" sort="Sharma, K R" uniqKey="Sharma K" first="K R" last="Sharma">K R Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giri, R" sort="Giri, R" uniqKey="Giri R" first="R" last="Giri">R. Giri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, R K" sort="Sharma, R K" uniqKey="Sharma R" first="R K" last="Sharma">R K Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan</wicri:regionArea>
<wicri:noRegion>Rajasthan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Letters in applied microbiology</title>
<idno type="eISSN">1472-765X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l
<sup>-1</sup>
Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32785942</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1472-765X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>Letters in applied microbiology</Title>
<ISOAbbreviation>Lett Appl Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/lam.13372</ELocationID>
<Abstract>
<AbstractText>Widespread of heavy metals contamination has led to several environmental problems. Some biological methods to remove heavy metals from contaminated wastewater are being widely explored. In the present study, the efficiency of a white-rot fungus, Phlebia brevispora to remove different metals (Pb, Cd and Ni) has been evaluated. Atomic absorption spectroscopy of treated and untreated metal containing water revealed that all the metals were efficiently removed by the fungus. Among all the used metals, cadmium was the most toxic metal for fungal growth. Phlebia brevispora removed maximum Pb (97·5%) from 100 mmol l
<sup>-1</sup>
Pb solution, which was closely followed by Cd (91·6%) and Ni (72·7%). Scanning electron microscopic images revealed that the presence of metal altered the morphology and fine texture of fungal hyphae. However, the attachment of metal on mycelia surface was not observed during energy-dispersive X-ray analysis, which points towards the intracellular compartmentation of metals in vacuoles. Thus, the study demonstrated an application of P. brevispora for efficient removal of Pb, Cd and Ni from the metal contaminated water, which can further be applied for bioremediation of heavy metals present in the industrial effluent.</AbstractText>
<CopyrightInformation>© 2020 The Society for Applied Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>K R</ForeName>
<Initials>KR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giri</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2826-1291</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>Enhanced Seed Grant</GrantID>
<Agency>Manipal University</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Lett Appl Microbiol</MedlineTA>
<NlmUniqueID>8510094</NlmUniqueID>
<ISSNLinking>0266-8254</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phlebia brevispora </Keyword>
<Keyword MajorTopicYN="N">bioaccumulation</Keyword>
<Keyword MajorTopicYN="N">bioremediation</Keyword>
<Keyword MajorTopicYN="N">heavy metals</Keyword>
<Keyword MajorTopicYN="N">white-rot fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32785942</ArticleId>
<ArticleId IdType="doi">10.1111/lam.13372</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Anahid, S., Yaghmaei, S. and Ghobadinejad, Z. (2011) Heavy metal tolerance of fungi. Scientia Iranica 18, 502-508.</Citation>
</Reference>
<Reference>
<Citation>Arora, D.S. and Sharma, R.K. (2011) Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresour Technol 102, 8085-8091.</Citation>
</Reference>
<Reference>
<Citation>Bayramoglu, G., Denizli, A., Bektas, S. and Arica, M.Y. (2002) Entrapment of Lentinus sajor-caju into Ca-alginate gel beads for removal of Cd (II) ions from aqueous solution: preparation and biosorption kinetics analysis. Microchem J 72, 63-76.</Citation>
</Reference>
<Reference>
<Citation>Bayramoğlu, G., Bektaş, S. and Arıca, M.Y. (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101, 285-300.</Citation>
</Reference>
<Reference>
<Citation>Brand, A. and Gow, N.A. (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12, 350-357.</Citation>
</Reference>
<Reference>
<Citation>Chen, A., Zeng, G., Chen, G., Liu, L., Shang, C., Hu, X., Lu, L., Chen, M. et al. (2014) Plasma membrane behavior, oxidative damage, and defense mechanism in Phanerochaete chrysosporium under cadmium stress. Process Biochem 49, 589-598.</Citation>
</Reference>
<Reference>
<Citation>Chen, A., Zeng, G., Chen, G., Fan, J., Zou, Z., Li, H., Hu, X. and Long, F. (2011) Simultaneous cadmium removal and 2, 4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 91, 811-821.</Citation>
</Reference>
<Reference>
<Citation>Damodaran, D., Balakrishnan, R.M. and Shetty, V.K. (2013) The uptake mechanism of Cd (II), Cr (VI), Cu (II), Pb (II), and Zn (II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed Res Int. https://doi.org/10.1155/2013/149120.</Citation>
</Reference>
<Reference>
<Citation>Dilek, F.B., Erbay, A. and Yetis, U. (2002) Ni (II) biosorption by Polyporous versicolor. Process Biochem 37, 723-726.</Citation>
</Reference>
<Reference>
<Citation>Eitinger, T., Degen, O., Böhnke, U. and Müller, M. (2000) Nic1p, a Relative of bacterial transition metal permeases in Schizosaccharomyces pombe, provides nickel ion for urease biosynthesis. J Biol Chem 275, 18029-18033.</Citation>
</Reference>
<Reference>
<Citation>Flora, S.J.S., Mittal, M. and Mehta, A. (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Altern Med Rev 14, 87-88.</Citation>
</Reference>
<Reference>
<Citation>Gopal, M., Pakshirajan, K. and Swaminathan, T. (2002) Heavy metal removal by biosorption using Phanerochaete chrysosporium. Appl Biochem Biotechnol 102, 227-237.</Citation>
</Reference>
<Reference>
<Citation>Gunatilake, S.K. (2015) Methods of removing heavy metals from industrial wastewater. Methods 1, 14.</Citation>
</Reference>
<Reference>
<Citation>Huang, Z., He, K., Song, Z., Zeng, G., Chen, A., Yuan, L., Li, H. and Chen, G. (2019) Alleviation of heavy metal and silver nanoparticle toxicity and enhancement of their removal by hydrogen sulfide in Phanerochaete chrysosporium. Chemosphere 224, 554-561.</Citation>
</Reference>
<Reference>
<Citation>Javaid, A., Bajwa, R., Shafique, U. and Anwar, J. (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg 35, 1675-1682.</Citation>
</Reference>
<Reference>
<Citation>Javanbakht, V., Alavi, S.A. and Zilouei, H. (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69, 1775-1787.</Citation>
</Reference>
<Reference>
<Citation>Kamei, I., Suhara, H. and Kondo, R. (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69, 358.</Citation>
</Reference>
<Reference>
<Citation>Kamei, I., Sonoki, S., Haraguchi, K. and Kondo, R. (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73, 932-940.</Citation>
</Reference>
<Reference>
<Citation>Kovalchuk, A. and Driessen, A.J. (2010) Phylogenetic analysis of fungal ABC transporters. BMC Genom 11, 177.</Citation>
</Reference>
<Reference>
<Citation>Kumar, K.S., Dahms, H.U., Won, E.J., Lee, J.S. and Shin, K.H. (2015) Microalgae-a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113, 329-352.</Citation>
</Reference>
<Reference>
<Citation>Manna, A., Sundaram, E., Amutha, C. and Vasantha, V.S. (2018) Efficient removal of cadmium using edible fungus and its quantitative fluorimetric estimation using (Z)-2-(4 H-1, 2, 4-Triazol-4-yl) iminomethylphenol. ACS Omega 3, 6243-6250.</Citation>
</Reference>
<Reference>
<Citation>Mishra, A. and Malik, A. (2012) Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentils. Water Res 46, 4991-4998.</Citation>
</Reference>
<Reference>
<Citation>Noormohamadi, H.R., Fat'hi, M.R., Ghaedi, M. and Ghezelbash, G.R. (2019) Potentiality of white-rot fungi in biosorption of nickel and cadmium: modeling optimization and kinetics study. Chemosphere 216, 124-130.</Citation>
</Reference>
<Reference>
<Citation>Ortiz, D.F., Ruscitti, T., McCue, K.F. and Ow, D.W. (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270, 4721-4728.</Citation>
</Reference>
<Reference>
<Citation>Qing, X., Yutong, Z. and Shenggao, L. (2015) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol Environ Saf 120, 377-385.</Citation>
</Reference>
<Reference>
<Citation>Rudakiya, D.M. and Gupte, A. (2017) Degradation of hardwoods by treatment of white-rot fungi and its pyrolysis kinetics studies. Int Biodeterior Biodegrad 120, 21-35.</Citation>
</Reference>
<Reference>
<Citation>Schlunk, I., Krause, K., Wirth, S. and Kothe, E. (2015) A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res 22, 19384-19393.</Citation>
</Reference>
<Reference>
<Citation>Sharma, R.K. and Arora, D.S. (2010) Changes in biochemical constituents of paddy straw during degradation by white-rot fungi and its impact on in vitro digestibility. J Appl Microbiol 109, 679-686.</Citation>
</Reference>
<Reference>
<Citation>Shiraishi, E., Inouhe, M., Joho, M. and Tohoyama, H. (2000) The cadmium-resistant gene, CAD2, which is a mutated putative copper-transporter gene (PCA1), controls the intracellular cadmium-level in the yeast S. cerevisiae. Curr Genet 37, 79-86.</Citation>
</Reference>
<Reference>
<Citation>Sipos, G. and Kuchler, K. (2006) Fungal ATP-binding cassette (ABC) transporters in drug resistance and detoxification. Curr Drug Targets 7, 471-481.</Citation>
</Reference>
<Reference>
<Citation>Suh, J.H., Yun, J.W. and Kim, D.S. (1999) Cation (K+, Mg 2+, Ca 2+) exchange in Pb 2+ accumulation by Saccharomyces cerevisiae. Bioprocess Eng 21, 383-387.</Citation>
</Reference>
<Reference>
<Citation>Tsekova, K., Todorova, D. and Ganeva, S. (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegrad 64, 447-451.</Citation>
</Reference>
<Reference>
<Citation>Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M.L., Briat, J.F. and Curie, C. (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 1223-1233.</Citation>
</Reference>
<Reference>
<Citation>Wong, C., Tan, L.T., Mujahid, A., Lihan, S., Wee, J.L.S., Ting, L.F. and Müller, M. (2018) Biosorption of copper by endophytic fungi isolated from Nepenthes ampullaria. Lett Appl Microbiol 67, 384-391.</Citation>
</Reference>
<Reference>
<Citation>Xiao, P., Mori, T., Kamei, I. and Kondo, R. (2011) A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22, 859-867.</Citation>
</Reference>
<Reference>
<Citation>Xu, G. and Wang, J. (2014) Biodegradation of decabromodiphenyl ether (BDE-209) by white-rot fungus Phlebia lindtneri. Chemosphere 110, 70-77.</Citation>
</Reference>
<Reference>
<Citation>Zhang, Q., Zeng, G., Chen, G., Yan, M., Chen, A., Du, J., Huang, J., Yi, B. et al. (2015) The effect of heavy metal-induced oxidative stress on the enzymes in white-rot fungus Phanerochaete chrysosporium. Appl Biochem Biotechnol 175, 1281-1293.</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., Zhang, X., Chang, C., Yuan, Z., Wang, T., Zhao, Y., Yang, X., Zhang, Y. et al. (2016) Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere 150, 33-39.</Citation>
</Reference>
<Reference>
<Citation>Zhao, M.H., Zhang, C.S., Zeng, G.M., Huang, D.L. and Cheng, M. (2016) Toxicity and bioaccumulation of heavy metals in Phanerochaete chrysosporium. Trans Nonferrous Metals Soc China 26, 1410-1418.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<country name="Inde">
<noRegion>
<name sortKey="Sharma, K R" sort="Sharma, K R" uniqKey="Sharma K" first="K R" last="Sharma">K R Sharma</name>
</noRegion>
<name sortKey="Giri, R" sort="Giri, R" uniqKey="Giri R" first="R" last="Giri">R. Giri</name>
<name sortKey="Sharma, R K" sort="Sharma, R K" uniqKey="Sharma R" first="R K" last="Sharma">R K Sharma</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32785942
   |texte=   Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32785942" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020